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Abstract

A generic function is similar to an overloaded operator, but provides

a way to select an appropriate behavior at run-time instead of compile-

time. Dujardin and colleagues have proposed an algorithm for building

and compressing generic function dispatch tables.

We present several modifications to their algorithm, including an im-

provement to Pseudo-Closest-Poles and two new algorithms for com-

pressing pole tables. The two new compression algorithms are simple and

fast, and one produces smaller output than the original.

1 Introduction

Traditional object-oriented languages provide member functions. Languages
such as CLOS, Cecil and Dylan [Sha96], however, provide generic functions.
Generic functions are more flexible than member functions, but their additional
flexibility comes at a higher cost. Reducing this cost makes generic functions
more practical.

Both member functions and generic functions are polymorphic—they pro-
vide different behaviors for different types of objects, and they choose among
these behaviors at run-time. But member functions and generic functions dif-
fer in several key ways. A member function belongs to a particular class, and
only the descendants of that class may define new behaviors. To create a new
member function, a programmer must modify the appropriate class definitions.1

And a member function provides only single dispatch—the ability to select an
appropriate behavior based on the type of a single object. Generic functions, on

1If the original class definitions belong to a different organization, the programmer may be
out of luck.
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the other hand, do not belong to a particular class. A programmer may define
new generic functions without modifying existing classes.2 And generic func-
tions provide multiple dispatch—the ability to select an appropriate behavior
based on the types of more than one object.

Generic functions first appeared in CommonLoops [BKK+86]. In the fifteen
years since then, relatively few languages have chosen to provide generic func-
tions. Personal experience suggests that the slow adoption of generic functions
stems from implementation difficulty and performance concerns.3 Therefore,
if we want more languages to provide generic functions, we must find simple,
efficient implementation techniques.

1.1 A Simple Example: Rock, Paper, Scissors

Consider the children’s game of “rock, paper, scissors.” In this game, two
players each secretly select one of three objects. They then reveal their choices
simultaneously. According to the traditional rules of this game, each object
defeats exactly one of the others: “paper covers rock, rock crushes scissors, and
scissors cut paper.”

We can model this game using a small class hierarchy and a single generic
function. The pseudo-code in Figure 1 defines an abstract base class Thing,
three classes representing the objects in the game, and a generic function with
four methods. Methods 2–4 represent the three victory conditions, and Method 1
provides a default behavior.

Note that defeats shows the typical characteristics of a generic function. It
stands alone, independent of the class definitions. It provides four behaviors,
each appropriate to different object types. And it uses multiple dispatch—
there’s no way to select the appropriate behavior without looking at the types
of both arguments.

1.2 Generic Function Terminology

In Figure 1, defeats is a generic function with four methods. The variables
t1 and t2 are the formal parameters of each method. The values of the vari-
ables paper and rock are the actual parameters of the call defeats(paper,
rock). The process of choosing the correct method for a given list of actual
parameters is referred to as multiple dispatch.

A method specializes on the types of its formal parameters. For example,
method 2 specializes on Paper and Rock.

In the above example, methods 1 and 2 are applicable to the call defeats(paper,
rock). A method is applicable to a given list of actual parameters if and only if

2Generic functions do not automatically gain access to private members of a class, so this
ability raises fewer encapsulation issues than the reader might surmise.

3This is far from a consensus opinion. Jonathan Bachrach, upon reviewing this pa-
per, pointed out that several implementers have chosen to omit generic functions from new
languages because of concerns about namespace pollution and programmer-level semantics.
These same implementers, however, raised no objections about the current techniques for
implementing generic functions.
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// Class hiearchy.

abstract class Thing

class Paper (Thing)

class Rock (Thing)

class Scissors (Thing)

// Default behavior.

method defeats (Thing t1, Thing t2): return false // 1

// Victory conditions.

method defeats (Paper t1, Rock t2): return true // 2

method defeats (Rock t1, Scissors t2): return true // 3

method defeats (Scissors t1, Paper t2): return true // 4

// Sample invocation.

paper = new Paper

rock = new Rock

defeats(paper, rock) // Returns true.

Figure 1: A model of the game “rock, paper, scissors.”

every actual parameter is an instance of the type specified for the corresponding
formal parameter.

We define a partial ordering called specificity on the applicable methods
of a generic function. In the example above, method 2 is more specific than
method 1. Method 3, however, is neither more nor less specific than method 2,
because the two methods are applicable to different argument types. The exact
rules for method specificity vary from language to language.4

Thus, we can state our problem as follows:

Given a generic function and a list of actual parameters, choose the
most-specific applicable method.

1.3 Overview of Method Lookup Using Tables

Ideally, given a a generic function with N arguments and M methods, we should
be able to choose an appropriate method in O(N) operations. In general, pro-
grammers expect function call overhead to be small, and most programmers
would be surprised (and appalled) to discover that a Dylan function call can
easily take O(NM log M) operations [Sha96, pp. 95–96].

Dujardin and colleagues propose a hypothetical implementation of O(N)
dispatch [DAS98]. In this imaginary scenario, we would assign sequential ID

4In particular, it may be possible for two methods to have an ambiguous ordering, or for
method specificity to depend on the types of the actual parameters. Dujardin and colleagues
[DAS98] and Shalit [Sha96, p. 96] provide more details.
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func dispatch_m (arg1, arg2):

index1 = class_id(arg1)

index2 = class_id(arg2)

method = m_methods[m_dispatch_matrix[index1][index2]]

return method(arg1, arg2)

Figure 2: Naive dispatch code for a generic function m, based on hypothetical
suggestion by Dujardin and colleagues [DAS98].
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Figure 3: Inheritance relationship for classes A through H . Class B, for exam-
ple, is a subclass of class A.

numbers to every class in our program, and use these IDs as indexes into a
giant, N -dimensional matrix. We could then dispatch a two-argument generic
function m using the code in Figure 2.

Unfortunately, these matrices would require enormous amounts of space.
For a single generic function with N arguments, defined in a program with C

classes, we would need a matrix with CN elements, a number that could easily
range into the terrabytes [DAS98, p. 155].

Such a dispatch matrix, though, would contain many duplicate entries. Du-
jardin and colleagues propose an algorithm to eliminate these duplicates and
shrink a dispatch matrix down to a reasonable size [DAS98].

Consider the classes and methods in Figures 3 and 4.5 Since the generic
function m has 2 arguments, and our program has 8 classes, the generic function
m could be dispatched using a 8×8 matrix. But we can reduce this substantially.
Notice that, in the first argument position, no method ever specializes on class
C or class D. In fact, these classes inherit all their behaviors from class B. If we
can somehow combine these classes into a group, we can shorten one dimension
of our dispatch matrix.

In Figure 5, we mark off the specializers on the first argument position, and
divide the classes into three groups. Group 0 contains classes which may not be
used in the first argument position. Group 1 contains class A. Group 2 contains
classes B, C and D. We call classes A and B the primary 1-poles of function
m, where “1” is the argument position. We say that a pole influences all the
classes in its group. For example, class B influences classes B, C and D.

5This example closely follows several examples from the original paper by Dujardin and
colleagues [DAS98].
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m1(A, E)
m2(B, E)
m3(A, F )
m3(B, G)

Figure 4: Methods on the generic function m.
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Figure 5: 1-poles for generic function m.

In Figure 6, we mark off the specializers for the second argument position.
We discover three primary 2-poles (E, F , and G). But we also discover a
strange problem: Class H inherits from two different poles. Depending on the
type of the first argument, either method m3 or method m4 might have the
most specific specializers. Since the behavior of class H may differ from the
behavior of class F or G, we need to make H a secondary 2-pole.

We can now build two pole tables (Figure 7) mapping classes to the corre-
sponding pole ID.6 We use the pole IDs as indices into a 3× 5 dispatch matrix
(Figure 8) containing the most-specific-applicable methods for each combina-
tion. The dispatch matrix also contains two special values: α represents an
ambiguous-method error, and ε represents a no-applicable-methods error.

The dispatch matrix is built in a language-specific fashion.7

If we count the entries in these tables, we find that we have saved space. The
new tables contain 2∗8+3∗5 = 31 entries, while the old tables contained 8∗8 =
64 entries. And in larger programs, the savings typically will be much greater—

6Dujardin and colleagues referred to pole tables as argument arrays. We use slightly
different terminology in this paper.

7Dujardin and colleagues provide more details [DAS98]. Note that no appropriate algo-
rithms exist to build dispatch matrices for Dylan, as explained in that paper.
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Figure 6: 2-poles for generic function m.
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Argument A B C D E F G H
1 1 2 2 2 0 0 0 0
2 0 0 0 0 1 2 3 4

Figure 7: Uncompressed pole tables for generic function m.

2-pole
1-pole 0 1 2 3 4

0 ε ε ε ε ε

1 ε m1 m3 m1 m3

2 ε m2 α m4 α

Figure 8: Dispatch matrix for generic function m.

we will often be able shrink multi-megabyte tables down to a few hundred bytes.
The dispatch code for m now resembles Figure 9.

1.4 Overview of Compression Techniques

As seen in Table 1, this technique produces very small dispatch matrices. The
pole tables, however, are still uncomfortably large. Therefore, we need to com-
press the pole tables themselves using a second technique.

Dujardin and colleagues compress the pole tables using an argument-coloring
algorithm [DAS98, pp. 150–152]. If two pole tables contain no conflicting entries,
they can be merged as shown in Figure 10. But before the dispatch code looks up
an entry, it must verify that all the argument types are correct—otherwise, it will
use an entry intended for another pole table, with disastrous consequences. In a
statically-typed language, the compiler may verify argument types at compile-
time. But in a dynamically-typed language, the dispatch code must perform
this verification at run-time.

Although space-efficient, argument-coloring compression has several draw-
backs. It requires us to spend a lot of time building conflict lists and assigning
colors. It can only operate on a global basis—we can’t use argument-coloring

func dispatch_m (arg1, arg2):

index1 = m_pole_table_1[class_id(arg1)]

index2 = m_pole_table_2[class_id(arg2)]

method = m_methods[m_dispatch_matrix[index1][index2]]

return method(arg1, arg2)

Figure 9: Improved dispatch code for generic function m, based on an algorithm
by Dujardin and colleagues [DAS98].
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Hello-1 Hello-2 ICFP d2c
Pole Tables 16,100 36,960 46,436 320,574
Dispatch Matrices 1,176 1,527 1,731 3,397

Table 1: Relative number of entries in pole tables and dispatch matrices.

A B C D E F G H
Pole 1 2 2 2 1 2 3 4

Color (not stored) 1 1 1 1 2 2 2 2

Figure 10: Pole tables compressed using coloring algorithm by Dujardin and
colleagues [DAS98].

to compress a single pole table at a time. And in a dynamic language, it forces
us to perform extra type checks.

We could avoid much of the compile-time overhead using a simpler ap-
proach.8 As seen in Figure 7, there tend to be lots of boring entries at the
beginning or end of each row. We can trim these long runs of 0’s from the
tables, leaving only the interesting entries shown in Figure 11. If related classes
tend to clump together, this approach will provide us with excellent compression
and very respectable dispatch speeds.

We also propose a third form of compression, based on fixed-size partition-
ing.9 In this approach, we break the pole tables into fixed-size chunks, and
re-used duplicate chunks as shown in Figure 12. This technique allows us to
deal with run-time class creation gracefully, because we can simply add new
partitions to the end of the pole table.

2 Pole Table Generation

Dujardin and colleagues generate the uncompressed pole tables using the Pole-

Computation algorithm [DAS98, p. 139]. Using this algorithm, the compiler

8This compression technique is based on a conversation between the author and Thomas
Cormen. Both of us currently deny authorship.

9Vitek and Horspool describe several variable-sized partitioning techniques for single-
dispatch languages in [VH96].

Index
Argument Offset Size 0 1 2 3

1 A 4 1 2 2 2
2 E 4 1 2 3 4

Figure 11: Pole tables compressed using offset table fragments.
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Argument A-D E-H
1 ptr1 ptr0

2 ptr0 ptr2

Pointer 0 1 2 3
ptr0 0 0 0 0
ptr1 1 2 2 2
ptr2 1 2 3 4

Figure 12: Pole tables compressed using partitions.

can construct a pole table for argument position n of generic function m as
follows:

1. Compute the set of specializer classes for this argument position. This is
the set of class types of the nth formal parameters of each method on m.

2. Allocate an empty pole table, and mark each specializer class.

3. If Object is specializer class, then mark it as a primary pole. Otherwise,
mark it as an error pole.

4. For each remaining entry in the pole table, check to see if the entry has
been marked as a specializer class.

(a) If the entry has been marked as a specializer class, then mark it as a
primary pole.

(b) If the entry has not been marked as specializer class, then calculate
the Pseudo-Closest-Poles of the corresponding class. If there is a
single “close” pole, then copy down the appropriate pole information
to the current entry. If there is more than one such pole, then mark
the entry as a new secondary pole.

Note that Pole-Computation makes a single pass over the pole table. For
this to work, classes must appear in inheritance order—no class may appear
before its superclasses [DAS98, p. 133].

Figure 13 presents a slightly modified version of the Pole-Computation

algorithm. The new version deviates from the original in one place, replacing
the original call to Pseudo-Closest-Poles [DAS98, p. 136] with a call to a
slightly-modified algorithm (here called Single-Closest-Pole).

2.1 Class Ordering

As previously mentioned, we may not assign class IDs in an arbitrary fash-
ion. We must satisfy two goals, one mandatory and one related to compression
quality.

Ordering. The Pole-Computation algorithm requires the ID of a class to
be greater than the IDs of its superclasses. [DAS98, p. 133].
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func compute_pole_table (gf, position):

specializers = get_specializer_classes(gf, position)

pole_table = new array of size class_count, filled with 0

// Mark our specializers.

for specializer in specializers:

pole_table[specializer.class_id] = -1

// Define a local method to create a new pole.

// This updates several local data structures.

next_pole_id = 0

pole_classes = []

func create_pole (id):

pole_table[id] = next_pole_id

next_pole_id += 1

append(pole_classes, id)

// Entry 0 will always correspond to Object,

// the ultimate parent of all classes. We

// always need to assign a pole, either for a

// regular method or for a no-such-method error.

if pole_table[0] == -1:

default_pole_is_error = false

else:

default_pole_is_error = true

create_pole(0)

// Assign poles to all other classes.

for (i = 1; i < class_count; i++):

if pole_table[i] == -1:

// There’s a specializer on this class, so

// create a new primary pole.

create_pole(i)

else:

// Try to find the single "closest" pole, if any.

closest = single_closest_pole(i, pole_table, pole_classes)

if closest != None:

// Copy down the closest i-pole.

pole_table[i] = pole_table[closest]

else:

// Create a secondary pole.

create_pole(i)

Figure 13: A modified version of the Pole-Computation algorithm by Du-
jardin and colleagues [DAS98, p. 139].
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Locality. Our two new compression techniques rely on the pattern of “interest-
ing” entries in the pole tables. If our class ordering groups related classes
closely together, our compression ratios will be higher than they would
with a random ordering.

If class IDs are assigned after all classes are known, we can use a topological
sort of the class hierarchy [DAS98, p. 133]. A topological sort appears to produce
reasonably locality, and it satisfies the ordering constraint.

Other class-ordering algorithms can be found in the literature, not all of
which meet these constraints. The Gwydion Dylan compiler, for example, as-
signs class IDs using a pre-order traversal through inverse primary superclass
relationships [Fah94]. This produces excellent locality—it groups classes near
their primary superclass, and ignores “mix-in” classes. Unfortunately, this al-
gorithm violates the ordering constraint.

2.2 Computing the Single Closest Pole

The Pole-Computation algorithm relies on the Single-Closest-Pole algo-
rithm. The latter algorithm must distinguish between two cases:

• The current class is under the influence of a pre-existing pole. In this case,
Single-Closest-Pole must return the ID of that pole.

• The current class is a secondary pole. In this case, Single-Closest-Pole

must return None.

Dujardin and colleagues provide a mathematically-rigorous way of deciding
between these two cases. Let C be a non–primary-pole class with superclasses
S0 . . . Sn. Let P0 . . . Pn be the poles influencing S0 . . . Sn. If there exists some
Pi such that Pi is a subclass of P0 . . . Pi−1 and Pi−1 . . . Pn, then Pi influences
C. If no such Pi exists, then C is a secondary pole [DAS98, pp. 133–135].

Because we call Single-Closest-Pole from the inner loop, it needs to be
extremely efficient. We can achieve this efficiency in two ways: we can either
reduce the number of subtype tests needed to find Pi among P0 . . . Pn, or we
can identify special cases in which no such search is necessary. Dujardin and
colleagues follow the former course with great success; we pursue the latter.

Dujardin and colleagues provide an excellent algorithm for finding Pi using
only O(n) subtype tests [DAS98, p. 135]. This algorithm takes advantage of
the class ordering properties described in Section 2.1. Because the ID of a
class must always be greater than the IDs of its superclasses, any such Pi—if
it exists—must have the greatest class ID of P0 . . . Pn. So we can simply scan
through P0 . . . Pn, looking for the greatest class ID. We can then perform O(n)
subtype tests manually. If all these subtype tests succeed, then we have found
Pi. Otherwise, no such Pi exists.

Our optimizations, however, attempt to bypass this search completely. Fig-
ure 14 shows Single-Closest-Pole, our replacement for the original Pseudo-

Closest-Poles [DAS98, p. 136]. The new algorithm handles four cases:
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func single_closest_pole (id, pole_table, pole_classes):

superclasses = superclass_ids_for_class_id(id)

if superclasses.size == 1:

// Case 1: We have only one superclass.

return pole_table[superclasses[0]]

else:

// Scan over our superclasses, checking to see if our poles

// are identical, and finding our largest pole.

first_pole = pole_table[superclasses[0]]

all_poles_are_identical = true

current_largest = first_pole

for s in superclasses:

pole = pole_table[s]

if pole != first_pole:

all_poles_are_identical = false

if pole > current_largest:

current_largest = pole

if all_poles_are_identical:

// Case 2: All our superclasses share the same pole.

return first_pole

// Return None if our largest pole doesn’t hide the rest.

candidate = find_class_by_id(pole_classes[current_largest])

for s in superclasses:

pole = find_class_by_id(pole_classes[pole_table[s]])

if not is_identical_or_subclass(candidate, pole):

// Case 3b: At least two close poles.

return None

// Case 3a: One pole "hides" the rest.

return current_largest

Figure 14: The Single-Closest-Pole algorithm, based on the Pseudo-

Closest-Poles algorithm [DAS98, p. 136].

11



Case 1: 87%.10 Class C has only one superclass S0.

Return the pole ID of S0.

Case 2: 13%. Classes S0 . . . Sn all have the same pole ID.

Return the pole ID of S0.

Case 3a: 0.003%. Pi exists.

Return the pole ID of Pi.

Case 3b: <0.0001% Pi does not exist.

Return no pole ID.

The first two cases—covering 99.997% of the entries in real world pole
tables—can be handled without any subtype checks. Cases 3a and 3b can be
handled as usual.

We also replaced the original subtype tests [DAS98, pp. 135–137] with the
Packed Encoding described by Vitek and colleagues [VHK97].11 The latter can
be computed once for all the types in a program, eliminating the pole initial-
ization steps from Pole-Computation. This change produces no noticeable
performance penalty.

3 Compression Techniques

We implemented two new techniques for compressing pole tables: offset table
fragments, and fixed-size partitioning. Table 2 lists various properties of each.
Both of the new techniques provided reasonable compression despite their ex-
treme simplicity.

Table 3 shows the compression ratios achieved by both techniques on a va-
riety of real-world Dylan programs. We made several assumptions when calcu-
lating these pole-table sizes:

• Pole table entries require either 1 or 2 bytes, depending on the total num-
ber of entries in the corresponding dispatch matrix. The dispatch matrix
itself is stored as a flat array, and pole IDs are replaced with linear off-
sets. This technique, as described by Dujardin and colleagues [DAS98],
minimizes storage space and lookup time.

• A pointer to a fixed-size partition requires 4 bytes. This could be reduced
by adding an extra layer of indirection, at the cost of some performance.

We omitted certain argument positions from these calculations. Dylan’s
sealing declarations allow us to prove that certain argument positions can never
affect dispatch [Sha96]. No tables were constructed for these argument positions.
Dylan also allows generic functions to dispatch on non-class types [Sha96] or to

10We calculated these percentages from the pole tables of the d2c compiler.
11Andreas Bogk implemented Packed Encoding for the d2c compiler.

12



Compression Technique
Property Coloring Offset Partition
Worst Case O(CS2) O(CS) O(CS)
External type checks Required Unnecessary Unnecessary
Dispatch overhead None Small Small
Implementation complexity Moderate Trivial Trivial
Single-table compression No Yes Yes
Sensitivity to class order None High Medium
Compression 46%-79% 79–89% 18–72%

Table 2: Compression techniques.

Program Hello-1 Hello-2 ICFP d2c
Statistics Classes 115 165 188 606

Methods 744 1042 1253 2703
Executable 857K 1.3M 2.0M 5.5M
Generics 102 173 194 463

Arguments Total 166 262 309 897
Active 120 186 197 405
Hairy 11 21 28 84

Dispatch Single 57 111 128 342
Multiple 41 55 58 90

Pole Tables
Uncompressed Total 16K 36K 46K 315K

Single 6K 18K 24K 202K
Multiple 9K 19K 22K 113K

Coloring % saved 46% 58% 60% 79%
Total 8K 15K 18K 66K

Offset % saved 80% 79% 82% 89%
Total 3K 8K 8K 34K
Single 1K 3K 4K 22K
Multiple 2K 4K 5K 11K

Partition-32 % saved 18% 33% 44% 72%
Total 13K 24K 26K 87K
Single 5K 12K 13K 56K
Multiple 7K 13K 13K 31K

Dispatch Matrices
Entries 1,176 1,527 1,731 3,397

Coloring compression performs better if we combine the space used by single-
dispatch and multi-dispatch functions, because this increases the opportunity
to overlay pole tables in memory.

Table 3: Compression results.
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rely on information not available at compile time. These arguments have been
labeled “hairy” in Table 3.

We collected data by modifying the d2c compiler, an optimizing Dylan com-
piler provided by the Gwydion Project [Fah94]. Test programs included d2c it-
self, a ray-tracer submitted to the ICFP 2000 programming contest [BDGH00],
and two versions of “Hello, World.” The first version included only the core Dy-
lan run-time library, but the second version included several large, semi-standard
libraries. These applications represent a range of sizes and programming styles.
Executable sizes were calculated using static linking, even though recent releases
of the d2c compiler support shared libraries.

3.1 Argument Coloring

Dujardin and colleagues suggest a compression algorithm based on graph color-
ing [DAS98, pp. 150–152]. This compression algorithm uses information about
legal argument types to overlay pole tables in memory. It adds no dispatch over-
head to a statically-typed language, but it requires one type-check per argument
in a dynamically-typed language.

The code in Figure 15 performs the actual color assignment. The nested
loops in Step 2 have a worst-case time of O(CS2), where C is the number of
classes in the program, and S is the number of selectors. This case occurs when
the pole-tables are “full”—when every entry points to a valid method—and
some constant proportion of the classes in the program have no subclasses.

The dispatch code for a two-argument generic function m resembles Fig-
ure 16.

3.2 Offset Table Fragment

We can also compress pole tables by trimming redundant entries from each
end of the ends. If class IDs are assigned in the right order, the “interesting”
portion of the table typically appears somewhere in the middle. The ends of the
table, on the other hand, usually inherit their behavior from the class Object.
(This default behavior may be either a regular method specialized on Object or
a no-applicable-method error.) By trimming away any such leading or trailing
entries, we can achieve very respectable compression.

Unfortunately, this method is very sensitive to the order in which class IDs
are assigned (see Section 2.1). The results in Table 3 are based on a topological
sort of the entire class hierarchy, with no respect for compilation units. If
we were to assign consecutive IDs to the classes of each compilation unit, the
“interesting” portion of the pole array would become much larger.

The dispatch code for a two-argument generic function m resembles Fig-
ure 17. Note that the compiled version of this function will involve two12 con-

12Chris Hawblitzel suggested performing each bounds check using an unsigned integer com-
parison. This causes negative indices to be treated as large positive indices, and reduces the
number of branch instructions required from four to two.
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func assign_colors (pole_tables):

// Step 1: Build conflict sets for individual selectors.

selector_conflict_sets = new array of size class_count,

filled with empty sets

for pole_table in pole_tables:

for class in pole_table:

if class has no subclasses:

if class dispatches to non-error pole:

add pole table to matching conflict set

// Step 2: Caclute conflict sets for entire pole tables.

for scs in selector_conflict_sets:

for pole_table_1 in scs:

for pole_table_2 in scs:

if pole_table_1 is not pole_table_2:

add pole_table_2 to conflict set for pole_table_1

// Step 3: Allocate colors.

sort pole_tables by descreasing conflict set size

assigned_colors = empty list

for pole_table in pole_tables:

for color in assigned_colors:

for assigned_pole_table in color:

if pole_table conflicts with assigned_pole_table:

skip to next color

assign pole_table to color

skip to next pole_table

create new_color

assign pole_table to new_color

append new_color to colors

Figure 15: Pseudo-code for coloring compression [DAS98, pp. 150–152].
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func dispatch_m (arg1, arg2):

// Check argument types. In static languages,

// this may be done at compile time.

typecheck(arg1, m_arg1_type)

typecheck(arg2, m_arg2_type)

// Dispatch code.

index1 = m_pole_table_1[class_id(arg1)]

index2 = m_pole_table_2[class_id(arg2)]

method = m_methods[m_flat_dispatch_matrix[index1 + index2]]

return method(arg1, arg2)

Figure 16: Dispatch code for argument-coloring compression [DAS98].

ditional branch statements, which may cause some pipeline problems on certain
processors.

3.3 Fixed-Size Partitioning

Vitek and colleagues describe several ways to compress traditional C++ vtables
using variable-sized partitions [VH96]. These partitioning algorithms can be
adapted for compressing pole tables.

We designed a simple algorithm based on fixed-size partitions. We begin by
breaking the pole table into fixed-size blocks (typically 32 or 64 entries wide),
and searching for blocks which contain only one value. In most cases, this
repeated value will be either zero or one. We then replace these blocks with
pointers to statically-allocated blocks from our run-time library. Finally, we
reassemble our blocks into a two-tier pole table.

The dispatch code for a two-argument generic function m resembles Fig-
ure 18. Note that when the chunk size is a power of 2, the division and modulo
operations can be performed using bit-wise operations.

4 Related Research

Many techniques for dispatching generic functions appear in the literature.
These techniques include tree-based dispatch, table-based dispatch and pred-
icate dispatch. Good bibliographies can be found in [EKC98] and [DAS98].

Early systems relied heavily on run-time caching of dispatch information
either at the call site or on a per-generic-function basis. Other systems built
decision trees at compile-time. Recent examples of both approaches can be
found in the d2c compiler [Fah94].

According to Bachrach [Bac00], the Functional Developer compiler (formerly
known as Harlequin Dylan) creates new dispatch trees on the fly by plugging
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func dispatch_m (arg1, arg2):

// Get pole table index for the first argument.

offset_id = class_id(arg1) - m_pole_table_1_offset

if offset_id < 0 || offset_id >= m_pole_table_1_size:

index1 = 0

else:

index1 = m_pole_table_1[offset_id]

// Get pole table index for the second argument.

offset_id = class_id(arg2) - m_pole_table_2_offset

if offset_id < 0 || offset_id >= m_pole_table_2_size:

index2 = 0

else:

index2 = m_pole_table_2[offset_id]

// Call the appropriate method.

method = m_methods[m_flat_dispatch_matrix[index1 + index2]]

return method(arg1, arg2)

Figure 17: Dispatch code using offset table fragments.

func dispatch_m (arg1, arg2):

// Get pole table index for the first argument.

id = class_id(arg1)

partiton = m_partition_table_1[id / PARTITION_SIZE]

index1 = partition[id % PARTITION_SIZE]

// Get pole table index for the second argument.

id = class_id(arg2)

partiton = m_partition_table_2[id / PARTITION_SIZE]

index2 = partition[id % PARTITION_SIZE]

// Call the appropriate method.

method = m_methods[m_flat_dispatch_matrix[index1 + index2]]

return method(arg1, arg2)

Figure 18: Dispatch code using fixed-size partitions.
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together engine nodes [Unk]. These are small, tail-recursive code fragments
with local data. Various sorts of nodes can make dispatch decisions, modify
the dispatch tree, or signal errors. More recently, Bachrach has implemented
a specialized compiler that lives in the Functional Developer run-time environ-
ment and transparently compiles these dispatch trees into optimized native code
during garbage collection.

Ernst and colleagues have developed a much more general dispatch scheme
based on predicates [EKC98]. Their approach combines features of generic func-
tions, logical inference systems, and ML-style dispatch. They convert predicate
expressions into decision trees and balance the decision trees using heuristics
and profiler feedback.

5 Future Directions for Research

Several directions remain for future research. These include work with dispatch
matrices, class ordering, alternate compilation scenarios and on-the-fly compi-
lation.

5.1 The Dispatch Matrix and Method Monotonicity

Dujardin and colleagues provide an algorithm for efficiently computing the dis-
patch matrix [DAS98]. As they note, however, this algorithm only applies to
languages which guarantee method monotonicity. In such languages, the rel-
ative specificity of two methods depends solely on their formal parameters, and
never on their actual parameters. Dylan, unfortunately, violates this constraint
[Sha96, pp. 96–98]. Therefore, new algorithms must be designed before any of
the techniques in this paper can be applied to Dylan. This does not appear to
be an easy problem.

However, it would be possible to guarantee method monotonicity in Dylan
if certain rules about inheritance were enforced. In particular, Dylan’s rules
for method specificity depend on the order of the class precedence lists of the
actual parameters of a generic function [Sha96, p. 96]. If all classes were required
to have consistent class precedence lists, then method monotonicity would be
guaranteed.

5.2 New Class Ordering Algorithms

All the compression techniques in this paper depend, to some extent, on the
order in which we assign class IDs. If we can group related classes more closely,
we can improve our compression ratios.

The Gwydion Dylan compiler currently ignores “mix-in” classes when assign-
ing class IDs, as described in Section 2.1. This means that all the subclasses
of a non-“mix-in” class will normally have consecutive IDs. Unfortunately, this
algorithm does not assign class IDs in the order required for building pole tables.
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Therefore, it might be worthwhile to design a biased topological sort which
attempts to preserve certain grouping properties whenever practical.

5.3 Separate Compilation, Shared Libraries and Run-time

Updates

The algorithms in this paper make some inconvenient assumptions about the
compilation model we choose. In particular, they assume that we have already
seen the entire program before we assign class IDs or build dispatch tables.

These assumptions cause problems in several situations:

Separate compilation. We shouldn’t plan to build all our tables just before
linking an application. This slows down compilation cycle, and makes
development less pleasant. In an ideal world, we would build our dis-
patch tables incrementally as we compiled individual classes and generic
functions.

Shared libraries. Shared libraries present two issues. First, we’d like to store
as many dispatch tables as possible in shared libraries, not in the main
application. But we don’t know the full class hierarchy (or all the methods
defined on a generic function) until we’ve seen the whole program. Sec-
ond, we need to be able to fix bugs in shared libraries without breaking
applications which have already linked against them.

Run-time updates. Dylan allows the creation of new classes and the mod-
ification of existing generic functions at run-time. To support run-time
creation of classes, we must be able to add new entries to all our pole
tables and dispatch matrices. To support run-time modification of generic
functions, we must be able to re-compute all the tables for single generic
function efficiently. These operations are normally used to support inter-
active development environments similar to those traditionally provided
by various LISP dialects.

It might be possible to modify the algorithms in this paper to handle these
scenarios better. In particular, if we keep the tables small—and we can build
them quickly enough—we may be able to store them in the application binary. If
we assign class IDs in the right order, we might be able to store pre-compressed
table fragments in shared libraries and determine the correct offsets at run-time.
If we allow new entries to be inserted into our pole tables and dispatch matrices,
we can support run-time class creation.

The hardest of these problems, though, is fixing bugs in shared libraries
without breaking pre-existing applications. C++ provides few solutions to this
problem. Java escapes it by using a high-level linkage model and just-in-time
compilation. These are important challenges for any object-oriented language,
and they should be seriously considered when designing new languages.
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5.4 Run-time Recompilation of Dispatch Functions

The dispatch routines in Figures 9, 16, 17 and 18 contain various constant
values beginning with “m ”. Depending on the compilation model used, these
values may not be known while generating the dispatch routine. But repeatedly
fetching these values from memory may become quite expensive.

Bachrach faced a similar problem [Bac00] when working on Functional De-
veloper. The FD run-time library created new dispatch trees on the fly using
engine nodes [Unk]. According to Bachrach, these engine nodes spent too much
time fetching data from memory.

To solve this problem, Bachrach wrote a tiny, specialized compiler which
translated engine nodes into native machine code [Bac00]. This compiler ran
during garbage collection, and optimized all the engine nodes created since the
last pass of the collector.

The dispatch routines described in this paper could be optimized in a similar
fashion. The necessary compiler would be even simpler, and it could run during
the first invocation of a generic function.

6 Conclusion

We have identified two special-case optimizations that cover 99.997% of pole
table entries, reducing the number of typechecks required during table creation
by several orders of magnitude.

We have also presented two new algorithms for compressing pole tables. One
of these algorithms, Offset-Table-Fragments, provides better compression
results than the previous technique, despite its extreme simplicity and lower
compile-time complexity. Both of the new compression algorithms, however,
present a run-time performance trade-off. Although they provide “built-in”
typechecks for function arguments, they also require slightly more complex dis-
patch code.

To evaluate our algorithms, check the GD 2 3 3 GF RESEARCH branch out of
the Gwydion Dylan CVS archive described on the web at
http://www.gwydiondylan.org/downloading.phtml.
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