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Abstract
Probability is often counter-intuitive, and it always involves a great
deal of math. This is unfortunate, because many applications in
robotics and AI increasingly rely on probability theory. We intro-
duce a modular toolkit for constructing probability monads, and
show that it can be used for everything from discrete distributions
to weighted particle filtering. This modular approach allows us to
present a single, easy-to-use API for working with many kinds of
probability distributions.

Our toolkit combines several existing components (the list
monad, the Rand monad, and the MaybeT monad transformer),
with a stripped down version of WriterT Prob, and a new monad
for sequential Monte Carlo sampling. Using these components, we
show that MaybeT can be used to implement Bayes’ theorem.
We also show how to implement a monad for weighted particle
filtering.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Control structures;
G.3 [Probability and Statistics]

General Terms Probability, Monads

Keywords Bayesian filtering, particle filters

A very senior Microsoft developer who moved to Google
told me that Google works and thinks at a higher level of
abstraction than Microsoft. “Google uses Bayesian filtering
the way Microsoft uses the if statement,” he said. -Joel
Spolsky

1. Introduction
Probability is notoriously tricky and counter-intuitive. It’s easy to
ignore prior probabilities, confuse P (A|B) with P (B|A), or get
lost while trying to generalize Bayes’ theorem. But we encounter
probabilities more than ever, thanks to recent trends in search
algorithms, robotics and artificial intelligence.

To address these challenges, researchers have built several ex-
cellent programming languages based on probability distribution
monads [30, 27, 8]. Some of these languages use random sampling;
others compute exact results. But all of these languages are delight-
ful tools—they make previously subtle problems intuitive and easy.

But these waters are deeper than a casual glance reveals. Many
problems in probability theory can be expressed in terms of mon-

[Copyright notice will appear here once ’preprint’ option is removed.]

ads [18, 11, 14]. And if we examine a few such monads, certain
repeated patterns become obvious. In fact, most probability distri-
bution monads can be built from a small “toolkit” of monads and
monad transformers. The same parts are shared by discrete distri-
butions, random sampling monads, and even particle filters.

In general, the monads built from this toolkit make pleasant pro-
gramming languages. For example, imagine that we have an in-
fluenza test with a 30% false-positive rate, and a 10% false-negative
rate [2]. If we assume that 10% of the population has influenza, what
is the probability that someone with a positive test result is actually
infected? Instead of messing around with Bayes’ theorem, we can
simply write:

fluStatusGivenPositiveTest = do
fluStatus ← percentWithFlu 10
testResult ← if fluStatus ≡ Flu

then percentPositive 70
else percentPositive 10

guard (testResult ≡ Pos)
return fluStatus

This function will return a probability distribution of 44% Flu and
56% Healthy . Because only a small portion of the population is
actually infected, the false positives actually outnumber the true
ones. This monad in this example is similar to other implemen-
tations of the discrete probability monad [8], with the addition of
guard , which is used to do implicit Bayesian filtering.

We make the following contributions:

• We introduce a toolkit for constructing probability distribution
monads (Section 3). The toolkit consists of three monads (the
list monad, a Monte Carlo monad, and a sequential Monte
Carlo monad), and two monad transformers (PerhapsT and
MaybeT ). We use this toolkit to recreate an existing probability
distribution monad (Sections 3.2 and 5).

• We implement Bayes’ theorem using the MaybeT monad
transformer (Sections 3.3 and 6). MaybeT allows us to discard
possible outcomes, neatly encapsulating the notion of sampling
with rejections.

• We develop several new monads for sequential Monte Carlo
sampling, also known as particle filtering (Sections 3.4 and 7).
These monads support both rejection filters (using MaybeT )
and weighted filters (using PerhapsT ).

2. Background
Probability theory poses many challenges for programming lan-
guage designers. We must choose from a bewildering variety of
representations and techniques. We must work around the limita-
tions of the human intuition, which is notoriously bad at probabil-
ity. And we must keep the math from obscuring the actual problems
of interest. Solving all these problems at once is beyond the scope
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of any existing programming language. At best, we can hope to find
a sweet spot in the design space.

2.1 Choosing a representation
Probability theory offers a rich variety of problem-solving tools. At
times, this variety is perhaps too rich. For example, probability dis-
tributions may be represented as discrete distributions [8], random
sampling functions [30, 27, 8], measure terms [30], Kalman fil-
ters [31, 10], multi-hypothesis Kalman filters [10], or particle filters
[10, 6]. Similarly, Bayes’ theorem may be implemented using ex-
plicit calculations, the rejection method [30], importance sampling
[30], weighted particle filters, or more sophisticated techniques.

Of course, each of these choices comes with tradeoffs. Discrete
distributions offer exact answers, but they require exponential time
to solve certain problems. Sampling functions can represent arbi-
trary distributions, but they can only calculate approximate distri-
butions. Kalman filters are extremely efficient, but they treat all
distributions as simple Guassians.

To further complicate matters, many of these techniques are
traditionally described in ways that blur the underlying algebraic
connections. For example, the various implementations of Bayes’
theorem have quite a lot in common. But those similarities are hard
to see if we compare the textbook formula for Bayes’ theorem [31]
with a description of weighted particle filters [10].

In an ideal world, we would be able consolidate as many of
these techniques as possible under a single programming interface,
making the algebraic connections obvious.

2.2 Coping with faulty intuitions
Probability is often counter-intuitive. Even physicians, who work
with diagnostic tests on a daily basis, commonly make order-of-
magnitude errors in interpretation. In an informal study by Eddy,
most physicians concluded that a patient with an apparently benign
breast mass but a positive mammogram had a 75% chance of can-
cer. The actual chance of cancer, as calculated by Bayes’ theorm,
was only 7.7% [7].

Other probability puzzles are similarly misleading. In a famous
Parade Magazine article, Marilyn vos Savant described the “Monty
Hall” problem, in which contestants must choose from several
doors, one of which hides a prize [35]. Most of vos Savant’s readers
chose the wrong door, thanks to subtle ambiguities in the problem
statement and the use of inappropriate heuristics [23].

To correctly answer a question about probability, we must first
specify the details. In particular, we must know the starting condi-
tions, the protocols followed by any agents in the puzzle, and the
exact values we want to compute. This kind of precise specification
is well-suited to a programming language.

2.3 Separating the problem from the math
Once we’ve decided how to represent a problem, and specified
it precisely, we still need to do the math. But the math itself is
frequently a barrier—instead of focusing on the actual problem, we
often wind up trying to remember which version of Bayes’ theorem
applies in our particular case. Even worse, this preoccupation with
formulas can blind us to simpler ways of looking at the problem.

Consider the influenza test in Section 1. We know that the test
has a 30% false-positive rate and a 10% false-negative rate. If 10%
of the population has influenza, we know that

P (I) = 0.1 P (+|I) = 0.7 P (+|¬I) = 0.1

where P (I) is the probability that a patient has influenza, P (+|I)
is the probability of a true positive, and P (+|¬I) is the probability
of a false positive. We can plug these numbers into Bayes’ theorem,
and calculate P (I|+), the probability that patient has influenza,

[ ] Lists of outcomes
PerhapsT [ ] Discrete distributions
MaybeT (PerhapsT [ ]) . . . with rejection

MC Monte Carlo sampling
MaybeT MC . . . with rejection
PerhapsT MC . . . with weights

SMC Sequential Monte Carlo sampling
MaybeT SMC . . . with rejection
PerhapsT SMC . . . with weights

Table 1. The probability monad toolkit.

given a positive test result.

P (I|+) =
P (+|I)P (I)

P (+|I)P (I) + P (+|¬I)P (¬I)
=

7

16

But we can solve this problem more easily using a visual ap-
proach. Assuming we have 100 patients, we can separate them into
10 patients with influenza, and 90 healthy patients. If we then rep-
resent positive test results with “+”, our population looks like:
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We can see that 7/16ths of positive test results occur in patients
with influenza. The ease with which we can read answers off this
diagram represents our ideal; any programming language should be
as straightforward.

3. The probability monad toolkit
We are now ready to introduce our toolkit for building probability
monads. Our toolkit relies on two main ideas:

1. Monads allow us to split a computation into two parts: the main
program, and the bookkeeping details [22, 36]. In the main
program, we describe our problem in high-level terms, leaving
out most of the math. But behind the scenes, a monad keeps
track of the math for us, calculating probabilities and applying
Bayes’ theorem.

2. Monad transformers allow us to start with base monads, and
layer on extra features as needed [21, 17, 34, 9]. Our base mon-
ads represent simple ideas: lists, sampling functions, and sets
of particles. Everything else—including the probability calcu-
lations, the weights of the particles, and the implementation of
Bayes’ theorem—is supplied by one or more monad transform-
ers.

Using only three base monads and two monad transformers, we are
able to construct a wide range of probability distribution monads
(Table 1).
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[ ] (list monad) PerhapsT [ ] MaybeT (PerhapsT [ ])

(Flu,Pos)
(Flu,Neg)
(Healthy ,Pos)
(Healthy ,Neg)

7% (Flu,Pos)
3% (Flu,Neg)
9% (Healthy ,Pos)

81% (Healthy ,Neg)

7% Just (Flu,Pos)
3% Nothing
9% Just (Healthy ,Pos)

81% Nothing

Table 2. Building a monad in layers, with example data.

3.1 The list monad
The list monad allows us to combine elements from several lists,
generating every possible outcome [36]. Continuing with our in-
fluenza example, we define two data types:

data Status = Flu | Healthy
data Test = Pos | Neg

Using Haskell’s do-notation, we pick one item from each list and
return the result. In this example, the← symbol should be read as
“pick one item from.”

outcomes :: [(Status,Test)]
outcomes = do

status ← [Flu,Healthy ]
test ← [Pos,Neg ]
return (status, test)

The type declaration [(Status,Test)] is important, because it tells
Haskell to interpret the do-body as a computation in the list monad.
When we run this code, it will return a list of every possible
outcome:

(Flu,Pos) (Flu,Neg)
(Healthy ,Pos) (Healthy ,Neg)

Whenever the list monad encounters ←, it makes every possible
choice, backtracking as necessary. The list monad also appears
in Haskell and other languages as a list comprehension, a special
syntax for building lists [36]:

[(status, test) | status ← [Flu,Healthy ],
test ← [Pos,Neg ]]

For more information on the list monad, see Section 4.1.

3.2 The PerhapsT monad transformer
By itself, the list monad has no way to keep track of probabilities.
We can fix this using the PerhapsT monad transformer.

type DDist = PerhapsT [ ]

PerhapsT takes an existing monad, and attaches a probability to
each value in the computation. The probabilities are tracked invisi-
bly in the background, giving us a discrete probability distribution:

7% (Flu,Pos) 3% (Flu,Neg)
9% (Healthy ,Pos) 81% (Healthy ,Neg)

The code that generates this distribution is similar to our previous
example. We replace the lists with calls to weighted , which con-
structs weighted distributions:

weightedOutcomes :: DDist (Status,Test)
weightedOutcomes = do

status ← weighted [(10,Flu), (90,Healthy)]
test ←

if (status ≡ Flu)
then weighted [(70,Pos), (30,Neg)]
else weighted [(10,Pos), (90,Neg)]

return (status, test)

When run, weightedOutcomes returns a list of possible results
and their probabilities, as shown in the table above. Note that the
final DDist monad is equivalent to Erwig and Kollmansberger’s
Dist monad [8]. For more information on the PerhapsT monad
transformer, see Section 5.

3.3 The MaybeT monad transformer
In Section 2.3, we implemented Bayes’ theorem by counting up all
the patients marked “+”, and ignoring the rest. We can get a similar
effect using the MaybeT monad transformer:

type BDDist = MaybeT DDist

MaybeT takes an existing monad, and replaces each value of type
a with either Just a or Nothing [1]. The Nothing values represent
failed “branches” in the computation, values of no interest to us.
Filtering for test ≡ Pos , we get:

7% Just (Flu,Pos) 3% Nothing
9% Just (Healthy ,Pos) 81% Nothing

At the end of the computation, we can discard all the Nothing
values, and scale the remaining percentages so that they sum to
100%. Compare this example to the diagram in Section 2.3. Both
are implementations of Bayes’ theorem using the rejection method
and a normalization factor [27, 31].

The filteredWeightedOutcomes function is identical to our
earlier weightedOutcomes , except for the type declaration and the
guard function on the second-to-last line:

filteredWeightedOutcomes :: BDDist (Status,Test)
filteredWeightedOutcomes = do

status ← ...
test ← ...
guard (test ≡ Pos)
return (status, test)

The guard function checks to see if test ≡ Pos , and if not,
replaces the current branch of the computation with Nothing .

See Table 2 for a step-by-step breakdown of how the PerhapsT
and MaybeT monad transformers are used to construct BDDist .
For more information on the MaybeT monad transformer, see Sec-
tion 6.

3.4 The MC and SMC monads
Monte Carlo algorithms rely on random sampling to compute ap-
proximate answers [20]. We implement random sampling using
the MC monad, described under various names by previous re-
searchers [30, 27, 8]. The example code for the MC monad is iden-
tical to weightedOutcomes , except for the type declaration:

sampledOutcomes :: MC (Status,Test)
sampledOutcomes = ...

sample sampledOutcomes 10

The sample function runs our code repeatedly, collecting the re-
sults in a list.

Sequential Monte Carlo sampling, also known as particle fil-
tering, differs from ordinary sampling in that all our samples pass
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x2 y2// z2// x2 y2 z2

x3 y3// z3// x3 y3 z3
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Figure 1. Monte Carlo sampling (left) and sequential Monte Carlo
sampling (right). In the latter case, we represent our samples with a
cloud of particles, which travel as a group through each step x, y, z
of the computation.

through each step of the computation as a group [10, 6]. See Fig-
ure 3.4 for a comparison of the two approaches. We can perform
sequential Monte Carlo sampling using the SMC monad.

The MC and SMC monads can also be combined with our
monad transformers (Table 1). For example, we can use PerhapsT
to construct a weighted version of the SMC monad:

type WSMC = PerhapsT SMC

Using the WSMC monad, we can replace our earlier calls to guard
with conditional probabilities. For example, if we know a patient’s
test result is positive, we can write:

statusGivenPosResult :: WSMC Status
statusGivenPosResult = do

status ← weighted [(10,Flu), (90,Healthy)]
if (status ≡ Flu)

then applyProb 0.7
else applyProb 0.1

return status

This is a classic weighted particle filter [10]. For more information
on the MC and SMC monads, see Sections 4.3 and 7, respectively.

4. Monads and probability in Haskell
So far, our presentation of probability distribution monads has been
informal. Now we provide the theory that supports the toolkit, be-
ginning with a short introduction to monads and monad transform-
ers.

4.1 Monads
In Haskell, a type class describes an abstract interface, which may
be implemented by one or more actual types. The Monad type
class specifies two functions that must be defined by every monad
m [36, 28]. It also constrains m to be a type constructor with a
single argument:

class Monad m where
return :: a → m a
(>>=) :: m a → (a → m b)→ m b

The return function takes a value of type a , and constructs a new
value “in the monad,” that is, a new value of type m a . The >>=
operator1 is a bit trickier. It is best understood as two operations,
liftM and join:

liftM :: (Monad m)⇒ (a → b)→ m a → m b
join :: (Monad m)⇒ m (m a)→ m a

1 Read as “bind.”

ma >>= f = join (liftM f ma)

The liftM function is analogous to the standard map function.
Given a function of type a → b, and value of type m a , it reaches
inside m a , and replaces a with b. Similarly, the join function is
analogous to concat . It takes a nested value of type m (m a), and
collapses into a value of type m a .

For example, Haskell’s standard list type forms a monad. Note
the use of concat and map in place of join and liftM :

instance Monad [ ] where
return x = [x ]
ma >>= f = concat (map f ma)

Haskell’s do-notation is syntactic sugar for the >>= operator. It
expands as follows:

do x ← [1, 2]
return (x ∗ 3)

[1, 2] >>= (λx → return (x ∗ 3))

These two expressions are equivalent, and both return [3, 6].

4.2 Probabilities and distributions
We represent a probability as a rational number, allowing us to
work exact probabilities whenever possible.

newtype Prob = Prob Rational
deriving (Eq ,Ord ,Num,Fractional)

The deriving clause automatically implements the specified type
classes for us, based on the implementations for Rational .

The Dist type class specifies the interface that must be imple-
mented by a distribution type d .

class (Monad d)⇒ Dist d where
weighted :: [(Rational , a)]→ d a

The constraint (Monad d) requires all distributions to be monads.
The Dist type class requires only one function, weighted , which
constructs a weighted distribution from a list of weights and values.

We can define a uniform distribution by assigning each value a
weight of 1:

uniform :: Dist d ⇒ [a ]→ d a
uniform = weighted ◦map (λv → (1, v))

For a more realistic Dist interface, see earlier papers by Park and
colleagues [27] and Erwig and Kollmansberger [8].

4.3 The MC monad: An example
We can turn the proposed Rand monad [1] into a probability
distribution by defining a Dist instance for it. This corresponds to
the sampling monads which have appeared in a number of earlier
papers [30, 27, 8].

type MC = Rand StdGen

instance Dist MC where
weighted wvs = fromList (map flipPair wvs)

where flipPair (a, b) = (b, a)

We create a type alias MC , which refers to Rand StdGen . The
parameter StdGen specifies what source of random numbers will
be used, and the fromList function makes a weighted selection
from a list. We also define a sample function:

sample :: MC a → Int → MC [a ]
sample r n = sequence (replicate n r)

The standard sequence function converts a value of type [m a ]
into a value of type m [a ].

Draft paper for Hac 07 II in Freiburg. 4 2007/10/2



4.4 Monad transformers
In denotational semantics, a monad morphism is a mapping from
one monad to another [21]. Monad morphisms take an underlying
monad, and add features such as state, an environment, or contin-
uations. Less formally, monad morphisms may be thought of as
type-level functions from one monad to another.

In Haskell, we can achieve the same result using a monad trans-
former [19, 15, 33]. To define a monad transformer ExampleT , we
must implement both return and >>= in terms of m , the monad to
be transformed:

instance (Monad m)⇒ Monad (ExampleT m) where
return = ...
ma >>= f = ...

We must also provide an implementation of lift , which maps values
from a monad m into its transformed counterpart t m .

class MonadTrans t where
lift :: Monad m ⇒ m a → t m a

For examples of monad transformers, see Sections 5.3 and 6.

5. Monoids and discrete distributions
In this section, we introduce monoids, M -sets, and the MVT
monad transformer. Using these pieces, we build the DDist dis-
tribution described in Section 3.2. Special thanks go to Dan
Piponi, for inspiring the treatment of M -sets in Section 5.2, and
to Cale Gibbard, for first noticing the decomposition of DDist into
WriterT Prob [ ].

5.1 Monoids
A monoid is a triple (M, e,⊗), where M is a set, ⊗ is an as-
sociative binary operation, and e is an identity element such that
e ⊗ x = x ⊗ e = x. In Haskell, we can represent a monoid using
the built-in Monoid type class [15]:

class Monoid a where
mempty :: a
mappend :: a → a → a

Here, mempty is e, and mappend is ⊗.
Probabilities form a monoid (P, 1,×), where P is the set of

all real numbers between 0 and 1 inclusive, and × is ordinary
multiplication. In Haskell, we write this as:

instance Monoid Prob where
mempty = 1
p1 ‘mappend ‘ p2 = p1 ∗ p2

5.2 M-sets and the MV monad
An M -set is a set X with a monoid action (·), such that

e · x = x (1)
m1 · (m2 · x) = (m1 ⊗m2) · x (2)

where x ∈ X , and m, n ∈M . A free M -set is any M -set where

m · x = x only if m = e. (3)

For an equivalent definition of M -sets, see Kilp and colleagues [16,
pp. 43–44,68].

Given a set S, define P ×S to be the set of pairs (p, s) such that
p ∈ P and s ∈ S. In other words, the set P × S corresponds to
elements of S annotated with probabilities. Now define our monoid

action to be p1 · (p2, s) = (p1p2, s). We can easily see that

1 · (p, s) = (p, s) (4)
p1 · (p2 · (p3, s)) = (p1p2p3, s)

= (p1p2) · (p3, s) (5)
p1 · (p2, s) = (p2, s) only if p1 = 1. (6)

From this, we conclude that P × S is a free M -set.
In Haskell, we can represent an element of an M -set using the

type MV , which contains a monoid and a value.

data (Monoid w)⇒ MV w a =
MV {mvMonoid :: w ,mvValue :: a }

The type MV Prob a corresponds to the set P × S above.
Interestingly, we can make MV a monad.

mapMV f (MV w v) = MV w (f v)
joinMV (MV w1 (MV w2 v)) =

MV (w1 ‘mappend ‘ w2) v

instance (Monoid w)⇒ Monad (MV w) where
return v = MV mempty v
mv >>= f = joinMV (mapMV f mv)

The return function corresponds to a map x 7→ (e, x), and
mempty to the monoid identity e. The joinMV function corre-
sponds to our monoid action (·).

Haskell programmers will recognize the MV monad as a
stripped-down version of the standard Writer monad [15]. We
omit the listen and pass functions, which are useless in this
context. We also omit the tell function, which we replace with
applyProb:

class (Monad m)⇒ MonadCondProb m where
applyProb :: Prob → m ()

instance MonadCondProb (MV Prob) where
applyProb p = MV p ()

We can use applyProb and MV to multiply a set of independent
probabilities together. For example, if we have an influenza test
with a 30% false negative rate, and we know that 10% of the popu-
lation has influenza, we can calculate the actual percentage people
receiving a false positive:

flu = applyProb 0.1
falseNegative = applyProb 0.3

missedFluCases :: MV Prob ()
missedFluCases = do

flu
falseNegative

The MV monad multiplies 0.1 and 0.3 behind the scenes, and re-
turns MV 0.03 (). This tells us that 3% of the population will have
influenza and incorrectly receive a negative test result. Conceptu-
ally, missedFluCases corresponds to a single “path” through the
example in Section 3.2, picking out only the case (Flu,Neg). Note
that MV Prob is not a probability distribution monad! At best, it
represents a single element of a probability distribution.

5.3 The MVT monad transformer
The MV monad is only marginally useful by itself. We need some
way to combine the features of MV with other monads. We do this
by defining MVT , a stripped-down version of the WriterT monad
transformer [15].

newtype (Monoid w ,Monad m)⇒ MVT w m a =
MVT{runMVT :: m (MV w a)}

instance (Monoid w)⇒
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MonadTrans (MVT w) where
lift mv = MVT (do v ← mv

return (MV mempty v))

The trick is to take our underlying monad m a , and replace every
occurrence of a with MV w a . The runMVT function simply ex-
tracts the value packed inside our MVT wrapper. The lift function
will take an existing value of type m a , and promotes it to a value
of type MVT w a .

The Monad instance for MVT is closely modelled on that of
MV .

instance (Monoid w ,Monad m)⇒
Monad (MVT w m) where

return = lift ◦ return
ma >>= f = MVT bound

where bound = do
(MV w1 v1)← runMVT ma
(MV w2 v2)← runMVT (f v1)
return (MV (w1 ‘mappend ‘ w2) v2)

We define the return function for MVT in terms of lift and the
underlying monad’s return . The bind function is a bit trickier. We
need runMVT ma to get a value of type m (MV w a), and
use ← to strip off m . The final two lines perform the same work
as mapMV and bindMV , respectively, but do so in the context of
our underlying monad.

5.4 The DDist monad
Now we’re finally ready to build our discrete distribution monad.
We define PerhapsT to be an alias for MVT Prob, and apply it
to the standard list monad.

type PerhapsT = MVT Prob

type DDist = PerhapsT [ ]

The list monad, as we saw in Section 3.1, follows every possible
“branch” of a computation. When we apply PerhapsT to the list
monad, we associate a probability with each branch. To split a
branch into sub-branches, we use weighted .

instance Dist DDist where
weighted wvs = MVT (map toMV wvs)

where toMV (w , v) = MV (Prob (w / total)) v
total = sum (map fst wvs)

Note that we use total to normalize the weights, forcing them
to add up to 1. This not only ensures that weighted returns a
valid probability distribution, it also guarantees that the weights
calculated by >>= for our sub-branches will add up to the weight of
our original branch.

The DDist monad is a stripped-down version of Erwig and
Kollmansberger’s probability monad [8]. The factoring of DDist
into WriterT Prob [ ] has been independently discovered by
several people, including Cale Gibbard.

6. Bayes’ theorem and MaybeT
In Sections 2.3 and 3.3, we used Bayes’ theorem [5] to interpret
the result of an influenza test. In this section, we show how to
implement Bayes’ theorem using the MaybeT monad transformer.

6.1 Bayes’ theorem
We adopt the convention that P(A) specifies a vector of probabili-
ties, one for each possible value of A.

P(A) = 〈P (A = a1), . . . , P (A = an)〉 (7)

Two such vectors may be multiplied pointwise.

P(B = b|A)P(A) = 〈P (B = b|A = a1)P (A = a1), . . . ,

P (B = b|A = an)P (A = an)〉 (8)

Using this notation, we can state Bayes’ theorem [31, p. 479] as

P(A|B = b) =
P(B = b|A)P(A)

P (B = b)
(9)

=
P(B = b|A)P(A)P

i P (B = b|A = ai)P (A = ai)
(10)

Now recall the program from Section 3.3.

filteredWeightedOutcomes :: BDDist (Status,Test)
filteredWeightedOutcomes = do

status ← weighted [(10,Flu), (90,Healthy)]
test ← ...
guard (test ≡ Pos)
return (status, test)

This returns a list of possible results, and their corresponding prob-
abilities:

7% Just (Flu,Pos) 3% Nothing
9% Just (Healthy ,Pos) 81% Nothing

The Nothing values represent those branches of our computation
on which guard (test ≡ Pos) failed.

We can apply Bayes’ theorem to this example as follows. Let

P(A) = 〈P (A = a1), . . . , P (A = an)〉 (11)

where a1, . . . , an are the results of each branch of our computation.
Let G = g1∧· · ·∧gm, where gi is true if and only if our i-th guard
clause succeeds. This gives us

P(A|G) =
P(G|A)P(A)P

i P (G|A = ai)P (A = ai)
(12)

But for each branch ai of our computation, G is true if and only if
ai 6= Nothing . This gives us

P (G|A = ai) =


1 if ai 6= Nothing
0 if ai = Nothing

(13)

allowing us to simplify (12) to

P(A|G) =
P(G|A)P(A)P

ai 6=Nothing P (A = ai)
(14)

But this is equivalent to discarding all the Nothing terms, and
normalizing the remaining probabilities. Compare this result to the
diagram in Section 2.3.

6.2 The MaybeT monad transformer
To build our Bayesian monad, we need an implementation of
MaybeT [1]. The MaybeT monad transformer lifts a computa-
tion of type m a to a computation of type m (Maybe a).

newtype MaybeT m a =
MaybeT{runMaybeT :: m (Maybe a)}

instance MonadTrans MaybeT where
lift x = MaybeT (liftM Just x )

Here, liftM Just has the type m a → m (Maybe a), where m is
the monad being lifted.

We also need to define new versions of return and >>= using
the versions defined by m .

instance (Monad m)⇒ Monad (MaybeT m) where
return x = lift (return x )
ma >>= f = MaybeT (runMaybeT ma >>= f ′)
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where f ′ Nothing = return Nothing
f ′ (Just x ) = runMaybeT (f x )

There are two key concepts here:

1. Neither return or >>= create new Nothing values. This must
be done using mzero, defined in Section 6.3.

2. Once a Nothing value is inserted into the monad, it will be
passed along unchanged by >>=, suppressing all further calls to
any function f .

Note that we provide no MonadPlus instance for MaybeT , be-
cause it has ambiguous semantics. It could refer to either

instance (MonadPlus m)⇒ MonadPlus (MaybeT m)

which lifts the semantics of an underlying MonadPlus instance, or

instance (Monad m)⇒ MonadPlus (MaybeT m)

which provides semantics similar to MonadPlus Maybe . There-
fore, we leave the choice up to the user of MaybeT .

6.3 The BDDist monad
Now we are ready to define BDDist , a discrete distribution monad
with support for Bayes’ theorem. We apply MaybeT to DDist , and
lift the underlying weighted function into the new monad.

type BDDist = MaybeT DDist

instance (Dist d)⇒ Dist (MaybeT d) where
weighted wvs = lift (weighted wvs)

The guard function2 is actually supplied by the standard Haskell
library [28]:

guard :: MonadPlus m ⇒ Bool → m ()
guard cond = if cond then return () else mzero

If cond is true, then guard returns (). This continues the current
branch of the computation unchanged. But if cond is false, guard
returns mzero. This has the effect of injecting Nothing into the
computation, killing off the current branch.

To take advantage of guard , we need to make BDDist an
instance of MonadPlus . Haskell also forces us to supply mplus ,
which we don’t need in this paper.

instance MonadPlus BDDist where
mzero = MaybeT (return Nothing)
d1 ‘mplus‘ d2 = ...

We now have a monad which supports guard , and returns values
of type Maybe a . We want to turn that Maybe a back into a ,
keeping the Just values and discarding the Nothing values. We
can do this using catMaybes ′.

catMaybes ′ :: (Monoid w)⇒
[MV w (Maybe a)]→ [MV w a ]

catMaybes ′ = map (liftM fromJust) ◦
filter (isJust ◦mvValue)

Now we’re ready to implement Bayes’ theorem, following the
strategy outlined in Section 6.1. We use catMaybes ′ to discard all
the Nothing values, and sum the remaining probabilities into total .

bayes :: BDDist a → Maybe (DDist a)
bayes bfd

| total ≡ 0 = Nothing
| otherwise = Just (weighted (map unpack events))

2 Earlier versions of this paper used a condition function. Thank you to
David House for noticing that condition was identical to guard .

where
events = catMaybes ′ (runMVT (runMaybeT bfd))
total = sum (map mvMonoid events)
unpack (MV (Prob p) v) = (p, v)

If total ≡ 0, then our guard conditions have failed on every
possible path, and we return Nothing . Otherwise, we construct
a discrete probability distribution, using weighted to perform the
actual normalization.

6.4 The BMC monad
We can use MaybeT to define a second Bayesian monad, this one
based on rejection sampling [27]. Again, we omit the details of
mplus .

type BMC = MaybeT MC

instance MonadPlus BMC where
mzero = MaybeT (return Nothing)
d1 ‘mplus‘ d2 = ...

The BMC monad returns samples of type Maybe a . Once again,
we want to keep the Just values and discard the Nothing values.
We can do that using the sampleWithRejections function, which
takes n samples from a distribution, rejects those samples equal
to Nothing , and returns the rest. These remaining samples are the
ones that made it by all of our guard conditions.

sampleWithRejections :: BMC a → Int → MC [a ]
sampleWithRejections d n =

(liftM catMaybes) (sample (runMaybeT d) n)

Note that this function may return far fewer than n samples. This
is because the distribution d , in a worst-case scenario, may never
produce any samples at all. This will occur with the distribution
guard False , and other distributions with impossible-to-satisfy
guard conditions. Enhanced versions of sampleWithRejections
must take care not to hang in these circumstances.

7. Sequential Monte Carlo sampling
Sequential Monte Carlo sampling is used in robot localization,
computer vision, signal processing and econometrics [10, 6]. It
differs from regular Monte Carlo sampling in that it represents
samples as sets of “particles,” the values of which are updated over
time. In a typical application, each particle might represent one
possible location of a robot. Initially, the particles are positioned
at random. As the robot moves, the particles are moved along with
it (perhaps with some random variation, if the speed of the robot
is uncertain). If a particle winds up in an impossible location, such
as inside a wall, that particle can be discarded and a new particle
allocated elsewhere. The cloud of particles will eventually converge
on one or more probable locations for the robot.

The major advantage of sequential Monte Carlo sampling over
ordinary sampling is the ability to reallocate particles dynamically.
This allows the algorithm to focus resources on the most interesting
hypotheses, and therefore reduces the total number of samples
required.

7.1 The SMC monad
We define our SMC monad in terms of MC . Internally, we repre-
sent SMC as a function mapping the desired number of samples to
a list of actual samples. The list itself must be in the MC monad
because it can only be generated using random numbers.

newtype SMC a =
SMC{runSMC :: Int → MC [a ]}

liftMC :: MC a → SMC a
liftMC r = SMC (sample r)
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SMC a SMC (SMC b) SMC b

a b b

a b b

a b b

mapSMC f

f ::a→SMC b
// joinSMC //

Figure 2. mapSMC and joinSMC .

We can lift a distribution from MC to SMC simply by taking the
requested number of samples. The mapSMC function is a bit more
complex, however. We define a new sampling function, mapped ,
which first turns a distribution d into actual samples, and then
applies f to each sample. We package mapped inside our SMC
monad, where it can be run when needed.

mapSMC :: (a → b)→ SMC a → SMC b
mapSMC f d = SMC mapped

where mapped n = liftM (map f ) (runSMC d n)

The joinSMC function is the heart of the SMC monad. We begin
with a cloud of particles, where each particle is itself an entire
cloud (Figure 7.1, middle column). We want to take a single particle
from each nested cloud, and put those particles into a new, flattened
cloud.

To do this, we define a function joined , which takes n samples
from the outermost cloud, and stores them in the list ds , which has
type [SMC a ]. It then takes one sample from each of these clouds
using sample1 , and stores them in xss , which has type [[a ]]. All
that remains is to flatten this list using concat .

joinSMC :: SMC (SMC a)→ SMC a
joinSMC dd = SMC joined

where joined n = do
ds ← (runSMC dd n)
xss ← sequence (map sample1 ds)
return (concat xss)
sample1 d = runSMC d 1

By taking only one sample from each of our nested clouds of
particles, we effectively propagate each particle into one of its own
possible futures.

The remaining code is trivial.

instance Monad SMC where
return = liftMC ◦ return
ps >>= f = joinSMC (mapSMC f ps)

instance Dist SMC where
weighted = liftMC ◦ weighted

7.2 The WSMC monad and weighted particle filtering
Sequential Monte Carlo sampling is commonly performed using
weighted particles. This is a form of importance sampling, where
each sample has an associated weight [6]. A high-importance sam-
ple is interpreted as more “likely” than a low importance sample.
This allows us to get more data out of a given number samples. In-
stead of discarding samples, as we did using MaybeT in Section 6,
we can simply mark those samples as unlikely.

The definition of the WSMC monad should be unsurprising at
this point. It relies on the same techniques seen in Section 6, with
only cosmetic differences.

type WSMC = PerhapsT SMC

instance Dist WSMC where
weighted wvs = lift (weighted wvs)

runWSMC :: WSMC a → Int → MC [MV Prob a ]
runWSMC wps n = runSMC (runMVT wps) n

We do, however, provide two new features. The applyProb func-
tion is a weighted version of guard . It multiplies the current parti-
cle’s weight by p. Recall that p here is a probability, so we know
that 0 ≤ p ≤ 1. The actual multiplication is handled for us by
PerhapsT .

instance MonadCondProb WSMC where
applyProb p = MVT (return (MV p ()))

In practice, applyProb is used to apply a new piece of evidence
to our particles. For example, imagine that we have a robot with a
door sensor. Let x be the current reading of the door sensor, and
let P (x|pos) be the probability of observing x at pos. We want to
call applyProb with an argument of P (x|pos), which will apply
an appropriate weight to each of our particles. For an excellent
illustration of this process, see Fox and colleagues [10].

As time goes on, however, repeated calls to applyProb will
leave many of our particles with weights near zero. Periodically,
we want to replace these particles with higher-probability ones. We
can do this using the resample function.

resample :: WSMC a →WSMC a
resample d = lift (SMC resampled)

where resampled n = do
xs ← runSMC (runMVT d) n
sample (weighted (map unpack xs)) n

unpack (MV (Prob p) x ) = (p, x )

The resample function treats our weighted particles as a probabil-
ity distribution, and takes n new samples. This process will favor
particles with high weights over particles with low weights, con-
centrating most of our particles in places where they’ll do the most
good. This particular implementation of resampling, however, is
extremely naive and has statistical problems. See Doucet and col-
leagues for a survey of more sophisticated approaches [6].

8. Related work
Probability distribution monads are discussed by Lawvere [18] and
Giry [11]. Giry’s work focuses on Markov processes and transition
probabilities, and provides a categorical foundation for probability
measures. Jones and Plotkin lay further mathematical foundations,
introducing a probabilistic power domain and showing that it forms
a monad [14]. They also provide a λ-calculus model for the proba-
bility monad, and propose a probabilistic choice construct serving
the same purpose as weighted .

Ramsey and Pfeffer provide Haskell interfaces for several prob-
ability distribution monads, including a sampling monad that cor-
responds roughly to MC [30]. They show that monads offer effi-
cient implementations of support and sampling, but may be expo-
nentially slower than other techniques for calculating expectations.
To solve this problem, they translate the λ-calculus into measure
terms.

Park and colleagues use a sampling monad in a variety of real-
world robotics applications [27]. Their λ©-calculus uses sampling
functions to represent binomial, geometric, and Gaussian distri-
butions. They provide two implementations of Bayes’ theorem
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(one using the rejection method, the other using importance sam-
pling), and a primitive for calculating expectations. This is the best-
developed version of the MC monad in the literature.

Erwig and Kollmansberger have written an excellent Haskell
library supporting both discrete distributions and random sampling,
corresponding to the DDist and MC monads in this paper [8].
They provide a much richer set of higher-order functions than we
do, including functions for iterated simulation.

Our work differs from these earlier papers in several ways.
We focus on the underlying structure of the probability monads,
showing how to build them from layers of monad transformers.
We also show that Bayes’ theorem may be expressed naturally
using MaybeT , removing the need for special primitives. And
we introduce a new family of monads for sequential Monte Carlo
sampling.

8.1 Monad morphisms and monad transformers
The history of monad morphisms and monad transformers has been
described in a bibliography by Chung-chieh Shan [33]. Moggi
originally used monad morphisms to build a modular theory of
denotational semantics [21]. Moggi’s theory was adapted for use in
functional programming languages by King and Wadler [17]. Later
work focused heavily on modular interpreters [37, 34, 9, 19, 13].
A typical modular interpreter is based on an eval function in an
unspecified monad. On top of this foundation, several layers of
monad transformers are used to implement state, continuations,
error reporting, and other language features.

In another field, Chung-chieh Shan applied monad morphisms
to natural language semantics. He used various monad morphisms
to construct a modular theory of interrogatives, focus, intensional-
ity and quantification [32].

Monad transformers are well-supported by the Haskell pro-
gramming language [15]. For good tutorials, see Grabmueller [12]
and Newburn [25].

8.2 Other representations of probability distributions
A variety of techniques have been used to represent probability
distributions. Fox and colleagues provide an excellent survey of
Bayesian filtering and belief representations [10]. Park and col-
leagues also cover much of this ground in their paper on probability
distribution monads [27].

In robotics applications, probability distributions are often rep-
resented as Kalman filters [31, 10]. Kalman filters are highly effi-
cient, but they can only represent simple Gaussian distributions.
Under certain assumptions, however, Kalman filters are theoret-
ically optimal [10]. Unfortunately, our probability monad tookit
does not support Kalman filters, because Gaussian distributions
cannot be defined over arbitrary Haskell data types.

There is also an extensive literature on sequential Monte Carlo
sampling and particle filters. For a good overview, see Fox and
colleagues [10]. For a detailed discussion of current techniques, see
Doucet and colleagues [6].

8.3 Probabilistic programming languages
Probabilistic programming languages are an enormously rich area
of research. We describe a few here, just to give a sense of the sheer
diversity.

Pfeffer’s IBAL programming language supports sophisticated
probabilistic inference [29]. IBAL is a functional language, with
constructs similar to those in this paper. But where our monads di-
rectly calculate probability distributions, IBAL uses a two-phase
inference algorithm to efficiently solve large problems. Phase 1 an-
alyzes the program and produces an optimized computation graph.
Phase 2 solves the computation graph and returns a probability dis-
tribution over the possible outputs.

Allison describes a Haskell library for machine learning and in-
ductive inference [3, 4]. Inductive inference constructs a Bayesian
network from real-world data, filling in the connections automati-
cally. The major drawback of this approach is the risk of “over-
fitting,” which occurs when the inference engine constructs a
excessively-detailed model that describes every quirk of the train-
ing data. To avoid this problem, Allison uses Minimum Message
Length (MML) to choose a model minimizing the combined size
of the model and the compressed training data.

A rich variety of probabilistic logic programming languages
have also appeared in the literature. Some examples include Ng
and Subrahmanian [26], and Muggleton [24].

9. Conclusion
In this paper, we introduced a toolkit for building probability
monads. Many components of the toolkit already existed in stan-
dard Haskell, or in various proposed libraries. These included the
list monad, the Monte Carlo sampling monad, and the MaybeT
monad transformer. Two of our components, however, were new:
The SMC monad (Section 7), which performs sequential Monte
Carlo sampling, and the PerhapsT monad transformer (Section
5), which is a stripped-down version of WriterT Prob.

We also demonstrated some novel applications of this toolkit.
These included an implementation of Bayes’ theorem using MaybeT
(Section 6), and a monad which performs weighted particle filtering
(Section 7.2).

The most important benefit of the modular toolkit, however,
has been the ease with which we can construct new monads. This
facilitates tinkering and experimentation, and frequently offers us
new perspectives on well-known techniques. Many of the monads
in this paper were discovered by asking, “Hey, what happens if
we combine this with one of these?” We leave a great many such
questions unanswered, pending further exploration.

Acknowledgments
Dan Piponi provided me with hours of fascinating reading, and in-
troduced me to the notion of a free M -set monad transformer. Cale
Gibbard was the first to notice the decomposition of Erwig and
Kollmansberger’s discrete distribution monad into WriterT Prob [ ].
Nicholas Sinnott-Armstrong carefully read the first draft of this
paper for clarity, and found many places that needed further expla-
nation. Thanks also to Don Stuart, Derek Elkins, David House and
other members of the Haskell community who provided me with
advice and suggested new ideas. Any remaining mistakes are, of
course, my own.

References
[1] “NewMonads” proposal on Haskell wiki. Retrieved on 9 June 2007

from http://www.haskell.org/haskellwiki/NewMonads.

[2] Rapid diagnostic testing for influenza: Information for clinical
laboratory directors. Retrieved on 14 June 2007 from http://www.
cdc.gov/flu/professionals/diagnosis/rapidlab.htm,
2006.

[3] Lloyd Allison. Types and classes of machine learning and data
mining. In Michael Oudshoorn, editor, Twenty-Sixth Australasian
Computer Science Conference (ACSC2003), volume 16 of Confer-
ences in Research and Practice in Information Technology, pages
207–215, Adelaide, Australia, February 2003.

[4] Lloyd Allison. A programming paradigm for machine learning, with
a case study of bayesian networks. In Twenty-Ninth Australasian
Computer Science Conference (ACSC2006), volume 48 of Confer-
ences in Research and Practice in Information Technology, pages
103–111, 2006.

Draft paper for Hac 07 II in Freiburg. 9 2007/10/2

http://www.haskell.org/haskellwiki/NewMonads
http://www.cdc.gov/flu/professionals/diagnosis/rapidlab.htm
http://www.cdc.gov/flu/professionals/diagnosis/rapidlab.htm


[5] Thomas Bayes. An essay towards solving a problem in the doctrine
of chances. The Philosophical Transactions of the Royal Society,
53:370–418, 1763.

[6] Arnaud Doucet, Simon Godsill, and Christophe Andrieu. On
sequential Monte Carlo sampling methods for Bayesian filtering.
Statistics and Computing, 10:197–208, 2000.

[7] David M. Eddy. Probabilistic reasoning in clinical medicine:
Problems and opportunities. In Daniel Kahneman, Paul Slovic,
and Amos Tversky, editors, Judgment Under Uncertainty: Heuristics
and Biases, pages 249–267. Cambridge University Press, Cambridge,
England, 1982.

[8] Martin Erwig and Steve Kollmansberger. Probabilistic functional
programming in Haskell. Journal of Functional Programming,
16(1):21–34, 2006.

[9] David Espinosa. Semantic Lego. PhD thesis, Columbia University,
1995.

[10] Dieter Fox, Jeffrey Hightower, Lin Liao, Dirk Schulz, and Gaetano
Borriello. Bayesian filtering for location estimation. IEEE Pervasive
Computing, pages 24–33, September 2003.

[11] Michele Giry. A categorical approach to probability theory. In
Banaschewski and Bernhard, editors, Categorical Aspects of Topology
and Analysis, volume 915 of Lecture Notes in Mathematics, pages
65–85. Springer-Verlag, 1981.

[12] Martin Grabmüller. Monad transformers step by step. Draft paper,
October 2006.

[13] William Harrison and Samuel Kamin. Compilation as metacompu-
tation: Binding time separation in modular compilers. In 5th Math-
ematics of Program Construction Conference (MPC2000), Ponte de
Lima, Portugal, June 2000.

[14] C. Jones and G. D. Plotkin. A probabilistic powerdomain of
evaluations. In Proceedings, Fourth Annual Symposium on Logic in
Computer Science (LICS), pages 186–195, Pacific Grove, California,
June 1989.

[15] Mark Jones. Functional programming with overloading and higher-
order polymorphism. In Advanced Functional Programming: First
International Spring School on Advanced Functional Programming
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